Extra and Intracellular Synthesis of Nickel Oxide Nanoparticles Mediated by Dead Fungal Biomass

نویسندگان

  • Marcia Regina Salvadori
  • Rômulo Augusto Ando
  • Cláudio Augusto Oller Nascimento
  • Benedito Corrêa
  • Yogendra Kumar Mishra
چکیده

The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs), which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteri...

متن کامل

Ziziphus mauritiana mediated synthesis of copper and nickel nanoparticles for comparative efficacy in biological water purification

The burden of life on the earth is the source of biological contamination in water. Nanotechnology has promising contributions in control of microbial contaminations and medicinal plants further increase these properties. Presently, copper acetate and nickel oxide nanoparticles were synthesized using 1mM solution of each with Ziziphus mauritiana leaves extract as reducing agent. Nanoparticles w...

متن کامل

Synthesis of Nickel/ Molybdenum Oxide Bimetallic Nanoparticles via Microwave Irradiation Technique

   Nickel-molybdenum oxidebimetallic nanoparticles were synthesized in ethylene glycol using the microwave irradiation technique. According to the results, successive reduction of nickel and molybdenum ions, followed by thermal treatment of obtained nanoparticles led to formation of core-shell structured nickel-molybdenum oxide nanoparticles. According to the results, the thickness of the s...

متن کامل

Solid state synthesis of NiO nanoparticles from [(1,2-bis(2-formyl-3-methoxyphenyl)propane)nickel(II)] chloride

In this paper, nickel oxide (NiO) nanoparticles have been prepared by solid state thermal decomposition of an acyclic nickel(II) complex (1,2-bis(2-formyl-3-methoxyphenyl)propane)nickel(II) chloride, [NiL]Cl2, in an electrical furnace at optimal temperature, 450 ºC for 3.5 h. The nickel(II) complex is obtained via solid state synthesis using nickel(II) chloride and tetradentate O4 acyclic ligan...

متن کامل

Black Tea Extract Mediated Green Synthesis of Copper Oxide Nanoparticles

Copper oxide nanoparticles were synthesized using black tea extract and copper nitrate as thecopper source by the green method at different calcination temperatures. This method has manyadvantages such as nontoxic, economic viability, ease to scale up, less time consuming andenvironmental friendly approach for the synthesis of CuO nanoparticles without using any organicchemicals. The synthesize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015